Долгосрочная ожидаемая доходность индекса Global Market Index (GMI) оставалась выше 7% третий месяц подряд в январе, что выше декабрьской оценки. Пересмотренный прогноз, основанный на трех моделях, определенных ниже, по-прежнему отражает самый высокий прогноз доходности в новейшей истории для этого глобального бенчмарка, состоящего из нескольких классов активов.
Акции США по-прежнему являются единственным выбросом от ожидаемой доходности по сравнению с историей рынка и различными классами активов, составляющими GMI. Средний прогноз по американским акциям значительно ниже 10-летних показателей. Вывод: ожидается, что акции США будут заметно слабее в ближайшие годы по сравнению с реализованной доходностью рынка за последнее десятилетие. Напротив, остальные основные классы активов продолжают публиковать прогнозы доходности выше своих 10-летних рекордов. Исходя из этого, аргументы в пользу глобально диверсифицированного портфеля выглядят более привлекательными по сравнению с прошлым десятилетием.

GMI представляет собой теоретический эталон для «оптимального» портфеля, который подходит для среднего инвестора с бесконечным временным горизонтом. Соответственно, GMI полезен в качестве Отправная точка для настройки распределения активов и дизайна портфеля в соответствии с ожиданиями, целями, толерантностью к риску и т. д. История GMI показывает, что производительность этого пассивного бенчмарка конкурентоспособна с большинством активных стратегий распределения активов, особенно после корректировки на риск, торговые издержки и налоги.
Вполне вероятно, что некоторые, большинство или, возможно, все из приведенных выше прогнозов в той или иной степени будут далеки от истины. Однако ожидается, что прогнозы GMI будут несколько более надежными по сравнению с оценками по его компонентам. Прогнозы для конкретных рынков (акции США, сырьевые товары и т.д.) подвержены большей волатильности и ошибкам отслеживания по сравнению с агрегированием прогнозов в оценку GMI, что может уменьшить некоторые ошибки с течением времени.
Еще один способ рассмотрения приведенных выше прогнозов заключается в использовании оценок в качестве основы для уточнения ожиданий. Например, приведенные выше прогнозы могут быть скорректированы с помощью дополнительного моделирования, которое учитывает другие факторы, которые здесь не используются — текущую оценку, такую как дивидендная доходность.
Чтобы понять, как реализованная общая доходность GMI изменялась с течением времени, рассмотрим послужной список бенчмарка на скользящей 10-летней годовой основе. На приведенном ниже графике сравниваются показатели GMI с аналогичными показателями акций и облигаций США за прошлый месяц. Текущая доходность GMI за последние десять лет составляет 7,8%, что является сильным, но средним показателем по сравнению с недавней историей.
Ниже приведена краткая информация о том, как создаются прогнозы, и определения других метрик в таблице выше:
Вв: Модель Building Block использует историческую доходность в качестве прокси для оценки будущего. Используемый период выборки начинается с января 1998 года (самая ранняя доступная дата для всех перечисленных выше классов активов). Процедура заключается в расчете премии за риск для каждого класса активов, вычислении годовой доходности, а затем добавлении ожидаемой безрисковой ставки для создания прогноза общей доходности. Для ожидаемой безрисковой ставки мы используем последнюю доходность 10-летних казначейских ценных бумаг с защитой от инфляции (TIPS). Эта доходность считается рыночной оценкой безрисковой, реальной (с поправкой на инфляцию) доходности для «безопасного» актива — Эта «безрисковая» ставка также используется для всех моделей, описанных ниже. Обратите внимание, что используемая здесь модель BB (в общих чертах) основана на методологии, первоначально изложенной Ibbotson Associates (подразделение Morningstar).
ЭКВАЛАЙЗЕР: Модель Equilibrium реверсивно проектирует ожидаемую доходность за счет риска. Вместо того, чтобы пытаться предсказать доходность напрямую, эта модель опирается на несколько более надежную схему использования метрик риска для оценки будущей производительности. Этот процесс относительно надежен в том смысле, что прогнозировать риск немного проще, чем прогнозировать доходность. Три входа:
* Оценка ожидаемой рыночной цены риска всего портфеля, определяемая как коэффициент Шарпа, который представляет собой отношение премий за риск к волатильности (стандартное отклонение). Примечание: «портфолио» здесь и далее определяется как GMI
* Ожидаемая волатильность (стандартное отклонение) каждого актива (рыночные компоненты GMI)
* Ожидаемая корреляция для каждого актива относительно портфеля (GMI)
Эта модель оценки равновесной доходности была впервые изложена в статье профессора Билла Шарпа в 1974 году. Для краткого изложения см. объяснение Гэри Бринсона в главе 3 книги «Портативная программа MBA в инвестициях». Я также рассматриваю эту модель в своей книге «Динамическое распределение активов». Обратите внимание, что данная методология изначально оценивает премию за риск, а затем добавляет ожидаемую безрисковую ставку, чтобы получить прогноз общей доходности. Ожидаемая безрисковая ставка указана в BB выше.
АЖ: Эта методология идентична модели равновесия (EQ), описанной выше За одним исключением: Прогнозы скорректированы на основе краткосрочного импульса и долгосрочных коэффициентов возврата к среднему значению. Импульс определяется как текущая цена относительно скользящей 12-месячной скользящей средней. Средний коэффициент возврата оценивается как текущая цена относительно скользящей 60-месячной (5-летней) скользящей средней. Прогнозы равновесия корректируются на основе текущих цен относительно 12-месячных и 60-месячных скользящих средних. Если текущие цены находятся выше (ниже) скользящих средних, то нескорректированные оценки премий за риск уменьшаются (увеличиваются). Формула корректировки заключается в том, чтобы просто взять обратное среднее значение текущей цены на две скользящие средние. Например: если текущая цена класса активов на 10% выше его 12-месячной скользящей средней и на 20% выше 60-месячной скользящей средней, нескорректированный прогноз уменьшается на 15% (в среднем на 10% и 20%). Логика здесь заключается в том, что когда цены относительно высоки по сравнению с недавней историей, прогнозы равновесия снижаются. С другой стороны, когда цены относительно низки по сравнению с недавней историей, прогнозы равновесия повышаются.
Средняя: Этот столбец представляет собой простое среднее арифметическое трех прогнозов для каждой строки (класса активов)
10 лет RET: Чтобы получить представление о фактической доходности, в этом столбце показана общая доходность за последние 10 лет в годовом исчислении для классов активов за текущий целевой месяц.
Распространение: Прогноз усредненной модели за вычетом скользящей 10-летней доходности.
Научитесь использовать R для анализа портфеля
Количественная аналитика инвестиционного портфеля в R:
Введение в R для моделирования риска и доходности портфеля
Автор: Джеймс Пичерно